On-Line Maximum Likelihood Prediction with Respect to General Loss Functions
نویسندگان
چکیده
منابع مشابه
Maximum Likelihood vs. Sequential Normalized Maximum Likelihood in On-line Density Estimation
The paper considers sequential prediction of individual sequences with log loss (online density estimation) using an exponential family of distributions. We first analyze the regret of the maximum likelihood (“follow the leader”) strategy. We find that this strategy is (1) suboptimal and (2) requires an additional assumption about boundedness of the data sequence. We then show that both problem...
متن کاملSequential Prediction of Individual Sequences Under General Loss Functions
We consider adaptive sequential prediction of arbitrary binary sequences when the performance is evaluated using a general loss function. The goal is to predict on each individual sequence nearly as well as the best prediction strategy in a given comparison class of (possibly adaptive) prediction strategies, called experts. By using a general loss function, we generalize previous work on univer...
متن کاملMLgsc: A Maximum-Likelihood General Sequence Classifier
We present software package for classifying protein or nucleotide sequences to user-specified sets of reference sequences. The software trains a model using a multiple sequence alignment and a phylogenetic tree, both supplied by the user. The latter is used to guide model construction and as a decision tree to speed up the classification process. The software was evaluated on all the 16S rRNA g...
متن کاملMaximum likelihood haplotyping for general pedigrees.
Haplotype data is valuable in mapping disease-susceptibility genes in the study of Mendelian and complex diseases. We present algorithms for inferring a most likely haplotype configuration for general pedigrees, implemented in the newest version of the genetic linkage analysis system SUPERLINK. In SUPERLINK, genetic linkage analysis problems are represented internally using Bayesian networks. T...
متن کاملTargeted maximum likelihood estimation for prediction calibration.
Estimators of the conditional expectation, i.e., prediction, function involve a global bias-variance trade off. In some cases, an estimator that yields unbiased estimates of the conditional expectation for a particular partitioning of the data may be desirable. Such estimators are calibrated with respect to the partitioning. We identify the conditional expectation given a particular partitionin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer and System Sciences
سال: 1997
ISSN: 0022-0000
DOI: 10.1006/jcss.1997.1503